On High-Order Upwind Methods for Advection
نویسنده
چکیده
In the fourth installment of the celebrated series of five papers entitled “Towards the ultimate conservative difference scheme”, Van Leer (1977) introduced five schemes for advection, the first three are piecewise linear, and the last two, piecewise parabolic. Among the five, scheme I, which is the least accurate, extends with relative ease to systems of equations in multiple dimensions. As a result, it became the most popular and is widely known as the MUSCL scheme (monotone upstream-centered schemes for conservation laws). Schemes III and V have the same accuracy, are the most accurate, and are closely related to current high-order methods. Scheme III uses a piecewise linear approximation that is discontinuous across cells, and can be considered as a precursor of the discontinuous Galerkin methods. Scheme V employs a piecewise quadratic approximation that is, as opposed to the case of scheme III, continuous across cells. This method is the basis for the on-going “active flux scheme” developed by Roe and collaborators. Here, schemes III and V are shown to be equivalent in the sense that they yield identical (reconstructed) solutions, provided the initial condition for scheme III is defined from that of scheme V in a manner dependent on the CFL number. This equivalence is counter intuitive since it is generally believed that piecewise linear and piecewise parabolic methods cannot produce the same solutions due to their different degrees of approximation. The finding also shows a key connection between the approaches of discontinuous and continuous polynomial approximations. In addition to the discussed equivalence, a framework using both projection and interpolation that extends schemes III and V into a single family of high-order schemes is introduced. For these high-order extensions, it is demonstrated via Fourier analysis that schemes with the same number of degrees of freedom K per cell, in spite of the different piecewise polynomial degrees, share the same sets of eigenvalues and thus, have the same stability and accuracy. Moreover, these schemes are accurate to order 2K − 1, which is higher than the expected order of K.
منابع مشابه
Assessment of numerical schemes for solving the advection–diffusion equation on unstructured grids: case study of the Guaíba River, Brazil
In this work, a first-order upwind and a high-order flux-limiter schemes for solving the advection–diffusion equation on unstructured grids were evaluated. The numerical schemes were implemented as a module of an unstructured two-dimensional depth-averaged circulation model for shallow lakes (IPH-UnTRIM2D), and they were applied to the Guaíba River in Brazil. Their performances were evaluated b...
متن کاملA Positive Finite - Di erence Advection Scheme
1 Abstract. This paper examines a class of explicit nite-diierence advection schemes derived along the method of lines. An important application eld is large-scale atmospheric transport. The paper therefore focuses on the demand of positivity. For the spatial discretization, attention is connned to conservative schemes using 5 points per direction. The 4-th order central scheme and the family o...
متن کاملImplicit finite difference techniques for the advection-diffusion equation using spreadsheets
This study proposes one-dimensional advection–diffusion equation (ADE) with finite differences method (FDM) using implicit spreadsheet simulation (ADEISS). By changing only the values of temporal and spatial weighted parameters with ADEISS implementation, solutions are implicitly obtained for the BTCS, Upwind and Crank–Nicolson schemes. The ADEISS uses iterative spreadsheet solution technique. ...
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملCompact finite volume schemes on boundary-fitted grids
The paper focuses on the development of a framework for high-order compact finite volume discretization of the threedimensional scalar advection–diffusion equation. In order to deal with irregular domains, a coordinate transformation is applied between a curvilinear, non-orthogonal grid in the physical space and the computational space. Advective fluxes are computed by the fifth-order upwind sc...
متن کاملLecture notes Introduction to numerical methods for interfacial flows
Table of contents 1 Basic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Advection scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2.1 First-order upwind scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Second-order upwind scheme . . . . . . . ....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017